

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/rekall/checkouts/stable/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/rekall/checkouts/stable/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

The Rekall Forensic and Incident Response Framework

The Rekall Framework is a completely open collection of tools,
implemented in Python under the Apache and GNU General Public License,
for the extraction and analysis of digital artifacts computer systems.

The Rekall distribution is available from:
http://www.rekall-forensic.com/

Rekall should run on any platform that supports
Python [http://www.python.org]

Rekall supports investigations of the following 32bit and 64bit memory
images:

	Microsoft Windows XP Service Pack 2 and 3

	Microsoft Windows 7 Service Pack 0 and 1

	Microsoft Windows 8 and 8.1

	Microsoft Windows 10

	Linux Kernels 2.6.24 to 4.4.

	OSX 10.7-10.12.x.

Rekall also provides a complete memory sample acquisition capability for all
major operating systems (see the tools directory).

Quick start

Rekall is available as a python package installable via the pip
package manager. To install it, first create a virtal env, switch to
it and then install rekall:

$ virtualenv /tmp/MyEnv
New python executable in /tmp/MyEnv/bin/python
Installing setuptools, pip...done.
$ source /tmp/MyEnv/bin/activate
$ pip install --upgrade setuptools pip wheel
$ pip install rekall-agent

For windows, Rekall is also available as a self contained installer
package. Please check the download page for the most appropriate installer to
use Rekall-Forensic.com [http://www.rekall-forensic.com/]

To install from this git repository you will need to use pip
–editable and follow the correct order of installation (otherwise pip
will pull released depedencies which might be older):

$ virtualenv /tmp/MyEnv
New python executable in /tmp/MyEnv/bin/python
Installing setuptools, pip...done.
$ source /tmp/MyEnv/bin/activate
$ pip install --upgrade setuptools pip wheel
$ pip install --editable rekall/rekall-core
$ pip install --editable rekall/rekall-agent
$ pip install --editable rekall

On Windows you will need to install the Microsoft Visual C compilers
for python (for more info see this blog post
http://rekall-forensic.blogspot.ch/2015/09/installing-rekall-on-windows.html)

Mailing Lists

Mailing lists to support the users and developers of Rekall
can be found at the following address:

rekall-discuss@googlegroups.com

Licensing and Copyright

Copyright (C) 2007-2011 Volatile Systems
Copyright 2012-2016 Google Inc. All Rights Reserved.

All Rights Reserved

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

Bugs and Support

There is no support provided with Rekall. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE.

If you think you’ve found a bug, please report it at:

https://github.com/google/rekall/issues

In order to help us solve your issues as quickly as possible,
please include the following information when filing a bug:

	The version of rekall you’re using

	The operating system used to run rekall

	The version of python used to run rekall

	The suspected operating system of the memory image

	The complete command line you used to run rekall

History

In December 2011, a new branch within the Volatility project was created to
explore how to make the code base more modular, improve performance, and
increase usability. The modularity allowed Volatility to be used in GRR, making
memory analysis a core part of a strategy to enable remote live forensics. As a
result, both GRR and Volatility would be able to use each others’ strengths.

Over time this branch has become known as the “scudette” branch or the
“Technology Preview” branch. It was always a goal to try to get these changes
into the main Volatility code base. But, after two years of ongoing
development, the “Technology Preview” was never accepted into the Volatility
trunk version.

Since it seemed unlikely these changes would be incorporated in the future, it
made sense to develop the Technology Preview branch as a separate project. On
December 13, 2013, the former branch was forked to create a new stand-alone
project named “Rekall.” This new project incorporates changes made to streamline
the codebase so that Rekall can be used as a library. Methods for memory
acquisition and other outside contributions have also been included that were
not in the Volatility codebase.

Rekall strives to advance the state of the art in memory analysis, implementing
the best algorithms currently available and a complete memory acquisition and
analysis solution for at least Windows, OSX and Linux.

More documentation

Further documentation is available at
http://www.rekall-forensic.com/

Rekall Authors and contributors.

A possibly more current list can be found at
https://github.com/google/rekall/graphs/contributors.

Rekall 1.0 Authors

Michael Cohen [https://github.com/scudette]
Johannes Stuettgen [https://github.com/driest]
Jordi Sanchez [https://github.com/parkisan]
Mikhail Bushkov [https://github.com/mbushkov]
Joachim Metz [https://github.com/joachimmetz]
Adam Sindelar [https://github.com/the80srobot]

The following sections are copied from the Volatility AUTHORS.txt file.

Volatility 2.0 authors

Mike Auty
Andrew Case
Michael Cohen
Brendan Dolan-Gavitt
Michael Hale Ligh
Jamie Levy
AAron Walters

Volatility 1.3 authors:

AAron Walters awalters@volatilesystems.com
Volatile Systems LLC

Brendan Dolan-Gavitt bdolangavitt@wesleyan.edu

Volatools Basic authors:

AAron Walters
Komoku, Inc.

Nick L. Petroni, Jr.
Komoku, Inc.

Rekall Memory Forensic Framework

This is the GUI component of the Rekall framework.

angular-hotkeys

Configuration-centric keyboard shortcuts for your Angular apps.

[image: Coverage Status] [https://coveralls.io/r/chieffancypants/angular-hotkeys?branch=master]
[image: Build Status]

Requirements: Angular 1.2+

Features:

	Define hotkeys on an entire route, automatically binding and unbinding them as you navigate

	Automatic listing of shortcuts when users hit the ? key

	Super duper unit tests

Installation:

via bower:

$ bower install chieffancypants/angular-hotkeys --save

via npm:

$ npm install angular-hotkeys --save

please use either the minified or unminified file in the build directory

Why I made this:

Other projects out there rely too heavily on HTML markup for keyboard shortcuts. For example:

<div class="player">
 <div class="playPause-btn" shortcut="{space: playPause}"></div>
 <div class="mute-btn" shortcut="{'ctrl+down': mute}"></div>
</div>

While this is a great approach for many Angular apps, some applications do not have a 1 to 1 relationship between DOM elements and controller methods. In my case, many methods on the controller were only accessible through the keyboard.

Additionally, this only allows you to pass a function reference, you can’t pass arguments to the function you intend to call. So instead of simply calling seek(currentTime + 30) and seek(currentTime + 60), I needed to create a ton of helper functions on the scope (such as forward30 and forward60), and litter my HTML like this:

<div class="player" shortcut="{space: playPause,
 'alt+right': forward30,
 'ctrl+right': forward60,
 'left': back30,
 'ctrl+left': back60,
 up: volumeUp,
 down: volumeDown,
 'ctrl+down': mute,
 'ctrl+up': unmute,
 f: fullscreen,
 h: showHelp}">
 <div class="playPause-btn"></div>
 <div class="mute-btn"></div>
</div>

With a few dozen shortcuts, this left the DOM really messy, and with multiple views and directive templates, it was next to impossible to remember where all the different shortcuts were. This became a maintenance nightmare.

Usage:

You can either define hotkeys in your Controller, or in your Route configuration (or both). To start, though, require the lib as a dependency for your angular app:

angular.module('myApp', ['ngRoute', 'cfp.hotkeys']);

Behind the scenes, I’m using the Mousetrap [https://github.com/ccampbell/mousetrap] library to manage the key bindings. Check out the docs there for more information on what kind of key combinations can be used. This library is included in the files from the build directory, so there is no need to install and include Mousetrap separately.

Binding hotkeys in controllers:

It is important to note that by default, hotkeys bound using the hotkeys.add()
method are persistent, meaning they will continue to exist through route
changes, DOM manipulation, or anything else.

However, it is possible to bind the hotkey to a particular scope, and when that
scope is destroyed, the hotkey is automatically removed. This should be
considered the best practice when binding hotkeys from a controller. For this
usage example, see the hotkeys.bindTo() method below:

angular.module('myApp').controller('NavbarCtrl', function($scope, hotkeys) {
 $scope.volume = 5;

 // You can pass it an object. This hotkey will not be unbound unless manually removed
 // using the hotkeys.del() method
 hotkeys.add({
 combo: 'ctrl+up',
 description: 'This one goes to 11',
 callback: function() {
 $scope.volume += 1;
 }
 });

 // when you bind it to the controller's scope, it will automatically unbind
 // the hotkey when the scope is destroyed (due to ng-if or something that changes the DOM)
 hotkeys.bindTo($scope)
 .add({
 combo: 'w',
 description: 'blah blah',
 callback: function() {}
 })
 // you can chain these methods for ease of use:
 .add ({...});

});

Binding hotkeys in routes:

You can also define hotkeys on an entire route, and this lib will bind and unbind them as you navigate the app.

angular.module('myApp').config(function ($routeProvider) {
 $routeProvider.when('/', {
 controller: 'RestaurantsController',
 templateUrl: 'views/restaurants.html',
 hotkeys: [
 ['p', 'Sort by price', 'sort(price)']
]
 });
});

Binding hotkeys in directives:

Lastly, even though binding hotkeys in your templates/html tends to be a bad idea, it can be super useful for simple shortcuts. Think along the lines of a modal directive where you simply want to bind to the escape key or something equally simple. Accomplishing this within a controller is too much overhead, and it may lead to code-reuse.

Example of how directive-based hotkeys works:

<modal title="Modal Title" hotkey="{esc: close}">

Configuration

Disable the cheatsheet:

Disabling the cheatsheet can be accomplished by configuring the hotkeysProvider:

angular.module('myApp', ['cfp.hotkeys'])
 .config(function(hotkeysProvider) {
 hotkeysProvider.includeCheatSheet = false;
 })

Cheatsheet template:

angular.module('myApp', ['cfp.hotkeys'])
 .config(function(hotkeysProvider) {
 hotkeysProvider.template = '<div class="my-own-cheatsheet">...</div>';
 })

API

hotkeys.add(object)

object: An object with the following parameters:

	combo: They keyboard combo (shortcut) you want to bind to

	description: [OPTIONAL] The description for what the combo does and is only used for the Cheat Sheet. If it is not supplied, it will not show up, and in effect, allows you to have unlisted hotkeys.

	callback: The function to execute when the key(s) are pressed. Passes along two arguments, event and hotkey

	action: [OPTIONAL] The type of event to listen for, such as keypress, keydown or keyup. Usage of this parameter is discouraged as the underlying library will pick the most suitable option automatically. This should only be necessary in advanced situations.

	allowIn: [OPTIONAL] an array of tag names to allow this combo in (‘INPUT’, ‘SELECT’, and/or ‘TEXTAREA’)

hotkeys.add({
 combo: 'ctrl+w',
 description: 'Description goes here',
 callback: function(event, hotkey) {
 event.preventDefault();
 }
});

// this hotkey will not show up on the cheat sheet:
hotkeys.add({
 combo: 'ctrl+x',
 callback: function(event, hotkey) {...}
});

hotkeys.get(key)

Returns the Hotkey object

hotkeys.get('ctrl+w');
// -> Hotkey { combo: ['ctrl+w'], description: 'Description goes here', callback: function (event, hotkey) }

hotkeys.del(key)

Removes and unbinds a hotkey

hotkeys.del('ctrl+w');

Allowing hotkeys in form elements

By default, Mousetrap prevents hotkey callbacks from firing when their event originates from an input, select, or textarea element. To enable hotkeys in these elements, specify them in the allowIn parameter:

hotkeys.add({
 combo: 'ctrl+w',
 description: 'Description goes here',
 allowIn: ['INPUT', 'SELECT', 'TEXTAREA'],
 callback: function(event, hotkey) {
 event.preventDefault();
 }
});

Credits:

Muchas gracias to Craig Campbell for his Mousetrap [https://github.com/ccampbell/mousetrap] library, which provides the underlying library for handling keyboard shortcuts.

FileSaver.js

FileSaver.js implements the HTML5 W3C saveAs() FileSaver interface in browsers that do
not natively support it. There is a FileSaver.js demo [http://eligrey.com/demos/FileSaver.js/] that demonstrates saving
various media types.

FileSaver.js is the solution to saving files on the client-side, and is perfect for
webapps that need to generate files, or for saving sensitive information that shouldn’t be
sent to an external server.

Looking for canvas.toBlob() for saving canvases? Check out
canvas-toBlob.js [https://github.com/eligrey/canvas-toBlob.js] for a cross-browser implementation.

Supported Browsers

Browser	Constructs as	Filenames	Max Blob Size	Dependencies
————–	————-	————	————-	————
Firefox 20+	Blob	Yes	800 MiB	None
Firefox < 20	data: URI	No	n/a	Blob.js [https://github.com/eligrey/Blob.js]
Chrome	Blob	Yes	345 MiB	None
Chrome for Android	Blob	Yes	345 MiB	None
IE 10+	Blob	Yes	600 MiB	None
Opera 15+	Blob	Yes	345 MiB	None
Opera < 15	data: URI	No	n/a	Blob.js [https://github.com/eligrey/Blob.js]
Safari 6.1+*	Blob	No	?	None
Safari < 6	data: URI	No	n/a	Blob.js [https://github.com/eligrey/Blob.js]

Feature detection is possible:

try {
 var isFileSaverSupported = !!new Blob;
} catch (e) {}

IE < 10

It is possible to save text files in IE < 10 without Flash-based polyfills.
See ChenWenBrian’s saveTextAs() [https://github.com/ChenWenBrian/FileSaver.js#examples] for more details.

Safari 6.1+

Blobs may be opened instead of saved sometimes—you may have to direct your Safari users to manually
press ⌘+S to save the file after it is opened. Using the application/octet-stream MIME type to force downloads can cause issues in Safari [https://github.com/eligrey/FileSaver.js/issues/12#issuecomment-47247096].

Syntax

FileSaver saveAs(in Blob data, in DOMString filename)

Examples

Saving text

var blob = new Blob(["Hello, world!"], {type: "text/plain;charset=utf-8"});
saveAs(blob, "hello world.txt");

The standard W3C File API Blob [https://developer.mozilla.org/en-US/docs/DOM/Blob] interface is not available in all browsers.
Blob.js [https://github.com/eligrey/Blob.js] is a cross-browser Blob implementation that solves this.

Saving a canvas

var canvas = document.getElementById("my-canvas"), ctx = canvas.getContext("2d");
// draw to canvas...
canvas.toBlob(function(blob) {
 saveAs(blob, "pretty image.png");
});

Note: The standard HTML5 canvas.toBlob() method is not available in all browsers.
canvas-toBlob.js [https://github.com/eligrey/canvas-toBlob.js] is a cross-browser canvas.toBlob() that polyfills this.

[image: Tracking image]

Contributing

The FileSaver.js distribution file is compiled with Uglify.js like so:

uglifyjs FileSaver.js --comments /@source/ > FileSaver.min.js

Please make sure you build a production version before submitting a pull request.

 Copyright © 2014 Eli Grey [http://eligrey.com].

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

bower-angular-mocks

This repo is for distribution on bower. The source for this module is in the
main AngularJS repo [https://github.com/angular/angular.js/tree/master/src/ngMock].
Please file issues and pull requests against that repo.

Install

Install with bower:

bower install angular-mocks

Documentation

Documentation is available on the
AngularJS docs site [http://docs.angularjs.org/guide/dev_guide.unit-testing].

License

The MIT License

Copyright (c) 2010-2012 Google, Inc. http://angularjs.org

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

bower-angular-animate

This repo is for distribution on bower. The source for this module is in the
main AngularJS repo [https://github.com/angular/angular.js/tree/master/src/ngAnimate].
Please file issues and pull requests against that repo.

Install

Install with bower:

bower install angular-animate

Add a <script> to your index.html:

<script src="/bower_components/angular-animate/angular-animate.js"></script>

And add ngAnimate as a dependency for your app:

angular.module('myApp', ['ngAnimate']);

Documentation

Documentation is available on the
AngularJS docs site [http://docs.angularjs.org/api/ngAnimate].

License

The MIT License

Copyright (c) 2010-2012 Google, Inc. http://angularjs.org

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

bower-angular-resource

This repo is for distribution on bower. The source for this module is in the
main AngularJS repo [https://github.com/angular/angular.js/tree/master/src/ngResource].
Please file issues and pull requests against that repo.

Install

Install with bower:

bower install angular-resource

Add a <script> to your index.html:

<script src="/bower_components/angular-resource/angular-resource.js"></script>

And add ngResource as a dependency for your app:

angular.module('myApp', ['ngResource']);

Documentation

Documentation is available on the
AngularJS docs site [http://docs.angularjs.org/api/ngResource].

License

The MIT License

Copyright (c) 2010-2012 Google, Inc. http://angularjs.org

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

angular-file-upload-bower

bower distribution of angular-file-upload [https://github.com/danialfarid/angular-file-upload].
All issues and pull request must be sumbitted to angular-file-upload [https://github.com/danialfarid/angular-file-upload]

Install

Install with bower:

bower install ng-file-upload

Add a <script> to your index.html:

<script src="/bower_components/angular/angular-file-upload-shim.js"></script>
<!--only needed if you support upload progress/abort or non HTML5 FormData browsers.-->
<!-- NOTE: angular.file-upload-shim.js MUST BE PLACED BEFORE angular.js-->
<script src="/bower_components/angular/angular.js"></script>
<script src="/bower_components/angular/angular-file-upload.js"></script>

CodeMirror

[image: Build Status] [http://travis-ci.org/marijnh/CodeMirror]
[image: NPM version] [http://badge.fury.io/js/codemirror]

CodeMirror is a JavaScript component that provides a code editor in
the browser. When a mode is available for the language you are coding
in, it will color your code, and optionally help with indentation.

The project page is http://codemirror.netThe manual is at http://codemirror.net/doc/manual.htmlThe contributing guidelines are in CONTRIBUTING.md [https://github.com/marijnh/CodeMirror/blob/master/CONTRIBUTING.md]

How to contribute

	Getting help

	Submitting bug reports

	Contributing code

Getting help

Community discussion, questions, and informal bug reporting is done on the
CodeMirror Google group [http://groups.google.com/group/codemirror].

Submitting bug reports

The preferred way to report bugs is to use the
GitHub issue tracker [http://github.com/marijnh/CodeMirror/issues]. Before
reporting a bug, read these pointers.

Note: The issue tracker is for bugs, not requests for help. Questions
should be asked on the
CodeMirror Google group [http://groups.google.com/group/codemirror] instead.

Reporting bugs effectively

	CodeMirror is maintained by volunteers. They don’t owe you anything, so be
polite. Reports with an indignant or belligerent tone tend to be moved to the
bottom of the pile.

	Include information about the browser in which the problem occurred. Even
if you tested several browsers, and the problem occurred in all of them,
mention this fact in the bug report. Also include browser version numbers and
the operating system that you’re on.

	Mention which release of CodeMirror you’re using. Preferably, try also with
the current development snapshot, to ensure the problem has not already been
fixed.

	Mention very precisely what went wrong. “X is broken” is not a good bug
report. What did you expect to happen? What happened instead? Describe the
exact steps a maintainer has to take to make the problem occur. We can not
fix something that we can not observe.

	If the problem can not be reproduced in any of the demos included in the
CodeMirror distribution, please provide an HTML document that demonstrates
the problem. The best way to do this is to go to
jsbin.com [http://jsbin.com/ihunin/edit], enter it there, press save, and
include the resulting link in your bug report.

Contributing code

	Make sure you have a GitHub Account [https://github.com/signup/free]

	Fork CodeMirror [https://github.com/marijnh/CodeMirror/]
(how to fork a repo [https://help.github.com/articles/fork-a-repo])

	Make your changes

	If your changes are easy to test or likely to regress, add tests.
Tests for the core go into test/test.js, some modes have their own
test suite under mode/XXX/test.js. Feel free to add new test
suites to modes that don’t have one yet (be sure to link the new
tests into test/index.html).

	Follow the general code style of the rest of the project (see
below). Run bin/lint to verify that the linter is happy.

	Make sure all tests pass. Visit test/index.html in your browser to
run them.

	Submit a pull request
(how to create a pull request [https://help.github.com/articles/fork-a-repo])

Coding standards

	2 spaces per indentation level, no tabs.

	Include semicolons after statements.

	Note that the linter (bin/lint) which is run after each commit
complains about unused variables and functions. Prefix their names
with an underscore to muffle it.

angular-file-upload-shim-bower

bower distribution of angular-file-upload [https://github.com/danialfarid/angular-file-upload] shim file.
All issues and pull request must be sumbitted to angular-file-upload [https://github.com/danialfarid/angular-file-upload]

Install

Install with bower:

bower install ng-file-upload-shim

Add a <script> to your index.html:

<script src="/bower_components/angular/angular-file-upload-shim.js"></script>
<!--only needed if you support upload progress/abort or non HTML5 FormData browsers.-->
<!-- NOTE: angular.file-upload-shim.js MUST BE PLACED BEFORE angular.js-->
<script src="/bower_components/angular/angular.js"></script>
<script src="/bower_components/angular/angular-file-upload.js"></script>

Bootstrap [http://getbootstrap.com] [image: Bower version] [http://badge.fury.io/bo/bootstrap] [image: Build Status] [http://travis-ci.org/twbs/bootstrap] [image: devDependency Status] [https://david-dm.org/twbs/bootstrap#info=devDependencies]

[image: Selenium Test Status] [https://saucelabs.com/u/bootstrap]

Bootstrap is a sleek, intuitive, and powerful front-end framework for faster and easier web development, created by Mark Otto [http://twitter.com/mdo] and Jacob Thornton [http://twitter.com/fat], and maintained by the core team [https://github.com/twbs?tab=members] with the massive support and involvement of the community.

To get started, check out http://getbootstrap.com!

Table of contents

	Quick start

	Bugs and feature requests

	Documentation

	Compiling CSS and JavaScript

	Contributing

	Community

	Versioning

	Authors

	Copyright and license

Quick start

Three quick start options are available:

	Download the latest release [https://github.com/twbs/bootstrap/archive/v3.1.1.zip].

	Clone the repo: git clone https://github.com/twbs/bootstrap.git.

	Install with Bower [http://bower.io]: bower install bootstrap.

Read the Getting Started page [http://getbootstrap.com/getting-started/] for information on the framework contents, templates and examples, and more.

What’s included

Within the download you’ll find the following directories and files, logically grouping common assets and providing both compiled and minified variations. You’ll see something like this:

bootstrap/
├── css/
│ ├── bootstrap.css
│ ├── bootstrap.min.css
│ ├── bootstrap-theme.css
│ └── bootstrap-theme.min.css
├── js/
│ ├── bootstrap.js
│ └── bootstrap.min.js
└── fonts/
 ├── glyphicons-halflings-regular.eot
 ├── glyphicons-halflings-regular.svg
 ├── glyphicons-halflings-regular.ttf
 └── glyphicons-halflings-regular.woff

We provide compiled CSS and JS (bootstrap.*), as well as compiled and minified CSS and JS (bootstrap.min.*). Fonts from Glyphicons are included, as is the optional Bootstrap theme.

Bugs and feature requests

Have a bug or a feature request? Please first read the issue guidelines [https://github.com/twbs/bootstrap/blob/master/CONTRIBUTING.md#using-the-issue-tracker] and search for existing and closed issues. If your problem or idea is not addressed yet, please open a new issue [https://github.com/twbs/bootstrap/issues/new].

Documentation

Bootstrap’s documentation, included in this repo in the root directory, is built with Jekyll [http://jekyllrb.com] and publicly hosted on GitHub Pages at http://getbootstrap.com. The docs may also be run locally.

Running documentation locally

	If necessary, install Jekyll [http://jekyllrb.com/docs/installation] (requires v1.x).

	Windows users: Read this unofficial guide [https://github.com/juthilo/run-jekyll-on-windows/] to get Jekyll up and running without problems. We use Pygments for syntax highlighting, so make sure to read the sections on installing Python and Pygments.

	From the root /bootstrap directory, run jekyll serve in the command line.

	Windows users: While we use Jekyll’s encoding setting, you might still need to change the command prompt’s character encoding (code page [http://en.wikipedia.org/wiki/Windows_code_page]) to UTF-8 so Jekyll runs without errors. For Ruby 2.0.0, run chcp 65001 first. For Ruby 1.9.3, you can alternatively do SET LANG=en_EN.UTF-8.

	Open http://localhost:9001 in your browser, and voilà.

Learn more about using Jekyll by reading its documentation [http://jekyllrb.com/docs/home/].

Documentation for previous releases

Documentation for v2.3.2 has been made available for the time being at http://getbootstrap.com/2.3.2/ while folks transition to Bootstrap 3.

Previous releases [https://github.com/twbs/bootstrap/releases] and their documentation are also available for download.

Compiling CSS and JavaScript

Bootstrap uses Grunt [http://gruntjs.com/] with convenient methods for working with the framework. It’s how we compile our code, run tests, and more. To use it, install the required dependencies as directed and then run some Grunt commands.

Install Grunt

From the command line:

	Install grunt-cli globally with npm install -g grunt-cli.

	Navigate to the root /bootstrap directory, then run npm install. npm will look at package.json [https://github.com/twbs/bootstrap/blob/master/package.json] and automatically install the necessary local dependencies listed there.

When completed, you’ll be able to run the various Grunt commands provided from the command line.

Unfamiliar with npm? Don’t have node installed? That’s a-okay. npm stands for node packaged modules [http://npmjs.org/] and is a way to manage development dependencies through node.js. Download and install node.js [http://nodejs.org/download/] before proceeding.

Available Grunt commands

Build - grunt

Run grunt to run tests locally and compile the CSS and JavaScript into /dist. Uses Less [http://lesscss.org/] and UglifyJS [http://lisperator.net/uglifyjs/].

Only compile CSS and JavaScript - grunt dist

grunt dist creates the /dist directory with compiled files. Uses Less [http://lesscss.org/] and UglifyJS [http://lisperator.net/uglifyjs/].

Tests - grunt test

Runs JSHint [http://jshint.com] and QUnit [http://qunitjs.com/] tests headlessly in PhantomJS [http://phantomjs.org/] (used for CI).

Watch - grunt watch

This is a convenience method for watching just Less files and automatically building them whenever you save.

Troubleshooting dependencies

Should you encounter problems with installing dependencies or running Grunt commands, uninstall all previous dependency versions (global and local). Then, rerun npm install.

Contributing

Please read through our contributing guidelines [https://github.com/twbs/bootstrap/blob/master/CONTRIBUTING.md]. Included are directions for opening issues, coding standards, and notes on development.

Moreover, if your pull request contains JavaScript patches or features, you must include relevant unit tests. All HTML and CSS should conform to the Code Guide [http://github.com/mdo/code-guide], maintained by Mark Otto [http://github.com/mdo].

Editor preferences are available in the editor config [https://github.com/twbs/bootstrap/blob/master/.editorconfig] for easy use in common text editors. Read more and download plugins at http://editorconfig.org.

Community

Keep track of development and community news.

	Follow @twbootstrap on Twitter [http://twitter.com/twbootstrap].

	Read and subscribe to The Official Bootstrap Blog [http://blog.getbootstrap.com].

	Chat with fellow Bootstrappers in IRC. On the irc.freenode.net server, in the ##twitter-bootstrap channel.

	Implementation help may be found at Stack Overflow (tagged twitter-bootstrap-3 [http://stackoverflow.com/questions/tagged/twitter-bootstrap-3]).

Versioning

For transparency into our release cycle and in striving to maintain backward compatibility, Bootstrap is maintained under the Semantic Versioning guidelines. Sometimes we screw up, but we’ll adhere to these rules whenever possible.

Releases will be numbered with the following format:

<major>.<minor>.<patch>

And constructed with the following guidelines:

	Breaking backward compatibility bumps the major while resetting minor and patch

	New additions without breaking backward compatibility bumps the minor while resetting the patch

	Bug fixes and misc changes bumps only the patch

For more information on SemVer, please visit http://semver.org/.

Authors

Mark Otto

	http://twitter.com/mdo

	http://github.com/mdo

Jacob Thornton

	http://twitter.com/fat

	http://github.com/fat

Copyright and license

Code and documentation copyright 2011-2014 Twitter, Inc. Code released under the MIT license. Docs released under Creative Commons.

What does s3_cache.py do?

In general

s3_cache.py maintains a cache, stored in an Amazon S3 (Simple Storage Service) bucket, of a given directory whose contents are considered non-critical and are completely & solely determined by (and should be able to be regenerated from) a single given file.

The SHA-256 hash of the single file is used as the key for the cache. The directory is stored as a gzipped tarball.

All the tarballs are stored in S3’s Reduced Redundancy Storage (RRS) storage class, since this is cheaper and the data is non-critical.

s3_cache.py itself never deletes cache entries; deletion should either be done manually or using automatic S3 lifecycle rules on the bucket.

Similar to git, s3_cache.py makes the assumption that SHA-256 will effectively never have a collision [http://stackoverflow.com/questions/4014090/is-it-safe-to-ignore-the-possibility-of-sha-collisions-in-practice].

For Bootstrap specifically

s3_cache.py is used to cache the npm packages that our Grunt tasks depend on and the RubyGems that Jekyll depends on. (Jekyll is needed to compile our docs to HTML so that we can run them thru an HTML5 validator.)

For npm, the node_modules directory is cached based on our npm-shrinkwrap.canonical.json file.

For RubyGems, the gemdir of the current RVM-selected Ruby is cached based on the pseudo_Gemfile.lock file generated by our Travis build script.
pseudo_Gemfile.lock contains the versions of Ruby and Jekyll that we’re using (read our .travis.yml for details).

Why is s3_cache.py necessary?

s3_cache.py is used to speed up Bootstrap’s Travis builds. Installing npm packages and RubyGems used to take up a significant fraction of our total build times. Also, at the time that s3_cache.py was written, npm was occasionally unreliable.

Travis does offer built-in caching on their paid plans, but this do-it-ourselves S3 solution is significantly cheaper since we only need caching and not Travis’ other paid features.

Setup

Overview

	Create an Amazon Web Services (AWS) account.

	Create an Identity & Access Management (IAM) user, and note their credentials.

	Create an S3 bucket.

	Set permissions on the bucket to grant the user read+write access.

	Set the user credentials as secure Travis environment variables.

In detail

	Create an AWS account.

	Login to the AWS Management Console [https://console.aws.amazon.com].

	Go to the IAM Management Console.

	Create a new user (named e.g. travis-ci) and generate an access key for them. Note both the Access Key ID and the Secret Access Key.

	Note the user’s ARN (Amazon Resource Name), which can be found in the “Summary” tab of the user browser. This will be of the form: arn:aws:iam::XXXXXXXXXXXXXX:user/the-username-goes-here

	Note the user’s access key, which can be found in the “Security Credentials” tab of the user browser.

	Go to the S3 Management Console.

	Create a new bucket. For a non-publicly-accessible bucket (like Bootstrap uses), it’s recommended that the bucket name be random to increase security. On most *nix machines, you can easily generate a random UUID to use as the bucket name using Python:

python -c "import uuid; print(uuid.uuid4())"

	Determine and note what your bucket’s ARN is. The ARN for an S3 bucket is of the form: arn:aws:s3:::the-bucket-name-goes-here

	In the bucket’s Properties pane, in the “Permissions” section, click the “Edit bucket policy” button.

	Input and submit an IAM Policy that grants the user at least read+write rights to the bucket. AWS has a policy generator and some examples to help with crafting the policy. Here’s the policy that Bootstrap uses, with the sensitive bits censored:

{
 "Version": "2012-10-17",
 "Id": "PolicyTravisReadWriteNoAdmin",
 "Statement": [
 {
 "Sid": "StmtXXXXXXXXXXXXXX",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::XXXXXXXXXXXXXX:user/travis-ci"
 },
 "Action": [
 "s3:AbortMultipartUpload",
 "s3:GetObjectVersion",
 "s3:ListBucket",
 "s3:DeleteObject",
 "s3:DeleteObjectVersion",
 "s3:GetObject",
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX",
 "arn:aws:s3:::XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX/*"
]
 }
]
}

	If you want deletion from the cache to be done automatically based on age (like Bootstrap does): In the bucket’s Properties pane, in the “Lifecycle” section, add a rule to expire/delete files based on creation date.

	Install the travis RubyGem [https://github.com/travis-ci/travis]: gem install travis

	Encrypt the environment variables:

travis encrypt --repo twbs/bootstrap "AWS_ACCESS_KEY_ID=XXX"
travis encrypt --repo twbs/bootstrap "AWS_SECRET_ACCESS_KEY=XXX"
travis encrypt --repo twbs/bootstrap "TWBS_S3_BUCKET=XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX"

	Add the resulting secure environment variables to .travis.yml.

Usage

Read s3_cache.py‘s source code and Bootstrap’s .travis.yml for how to invoke and make use of s3_cache.py.

bower-angular

This repo is for distribution on bower. The source for this module is in the
main AngularJS repo [https://github.com/angular/angular.js].
Please file issues and pull requests against that repo.

Install

Install with bower:

bower install angular

Add a <script> to your index.html:

<script src="/bower_components/angular/angular.js"></script>

Documentation

Documentation is available on the
AngularJS docs site [http://docs.angularjs.org/].

License

The MIT License

Copyright (c) 2010-2012 Google, Inc. http://angularjs.org

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

Rekall Forensic and Incident Response Agent.

Please do not use yet - this code is highly experimental and subject
to rapid changes. This release is for evaluation only - we welcome
feedback.

Overview

The Rekall Agent is an endpoint response agent based on the Rekall
Framework. The main motivations for the Rekall Agest are

	Very simple architecture - everything is a file. We just move files
around.

	Very easy to deploy. Cloud based deployment ensures very high level
of scalability and low cost.

Quick start

The system architecture is discussed in length in the following
documents:

	http://rekall-forensic.blogspot.ch/2016/10/the-rekall-agent-whitepaper.html

In this short document I will discuss how to get up and running
quickly.

Installation

The Rekall Agent is an additional python package that depends on
Rekall. Therefore installation of the Rekall Agent follows the same
pattern as installing Rekall itself. To install the released version,
simply create a new virtual environment, switch to it and “pip install
rekall-agent”:

$ virtualenv /tmp/MyEnv
New python executable in /tmp/MyEnv/bin/python
Installing setuptools, pip...done.
$ source /tmp/MyEnv/bin/activate
$ pip install --upgrade setuptools pip wheel
$ pip install rekall-agent

Local HTTP based deployment.

In this part we will run the Rekall Agent with our own hosted HTTP
server. This setup is suitable for those users who do not want to use
the Google Cloud - but they will need to ensure the servers are
publically accessible and have sufficient disk space to store all the
collected data. Nevertheless this mode of operation is a good way to
try out the Rekall Agent on a small scale installation.

To create the installation we need to create a set of configuration
files. These are created inside a directory:

(Dev) $ rekall agent_server_initialize_http /tmp/new_HTTP/ \
 --base_url http://127.0.0.1:8000/ --bind_port 8000 \
 --client_writeback_path ~/.rekall_agent
Message

Generating new CA private key into /tmp/new_HTTP/ca.private_key.pem and \
 /tmp/new_HTTP/ca.cert.pem
Generating new Server private keys into /tmp/new_HTTP/server.private_key.pem \
 and /tmp/new_HTTP/server.certificate.pem
Writing server config file /tmp/new_HTTP/server.config.yaml
Writing client config file /tmp/new_HTTP/client.config.yaml
Done!

In the above the main configuration file is writen to
/tmp/new_HTTP/server.config.yaml. This file contains keys required
to manage the installation and so should be protected.

The --base_url refers to the publicaly accessible URL of the
server. The --bind_port is the port at which the http server should
listen. The --client_writeback_path is a path where the client may
store its state file (including its own keys).

Next we run an instance of the http server, worker and controller:

rekall -v --agent_config /tmp/new_HTTP/server.config.yaml http_server
rekall -v --agent_config /tmp/new_HTTP/server.config.yaml worker --loop 5
rekall -v --agent_config /tmp/new_HTTP/server.config.yaml agent_controller

The agent client has no credentials and therefore uses its own
specific configuration file. We can start it:

rekall -v --agent_config /tmp/new_HTTP/client.config.yaml agent

Cloud based deployment.

For very large scale deployments it is better to use the cloud. In
this case users do not need to run any servers themselves.

In order to deploy to the cloud you will need two things:

	A Google Cloud Project service account keys - this gives access to
cloud storage.

	A new Google Cloud Storage bucket to hold all the data.

First create a new cloud project through the Google Cloud Console
(https://console.cloud.google.com).

Next create a service account:

	Select IAM & Admin from the drop down.

	Select Service Accounts from the side box.

	Click “Create Service Account”.

	Give a name to the account and select role “Storage Admin”.

	Select “Furnish a new private key” and select JSON as the format.

	When the account is created the service account JSON file is
downloaded to your browser. Move it someplace safe.

Next Create a new Bucket:

	Select “Storage” from the side menu.

	Click “Create Bucket” to create a new bucket. Give it a name.

Now we can create the relevant config files for the Rekall Agent:

 $ rekall agent_server_initialize_gcs /tmp/new_GCS/ --bucket rekall-test \
 --service_account_path ~/.rekall_test_manager \
 --client_writeback_path ~/.rekall-agent
Message

Reusing existing CA keys in /tmp/new_GCS/ca.cert.pem
Reusing existing server keys in /tmp/new_GCS/server.certificate.pem
Server config at /tmp/new_GCS/server.config.yaml exists. Remove to regenerate.
Writing client config file /tmp/new_GCS/client.config.yaml
Writing manifest file.
Writing manifest file to rekall-test/manifest

Here we provide the path to the downloaded JSON file as
--service_account_path and the bucket name as --bucket.

We can start all the services as before:

rekall -v --agent_config /tmp/new_GCS/server.config.yaml worker --loop 5
rekall -v --agent_config /tmp/new_GCS/server.config.yaml agent_controller

And deploy the clients with their config files:

rekall -v --agent_config /tmp/new_GCS/client.config.yaml agent

MacPmem - OS X Physical Memory Access

MacPmem enables read/write access to physical memory on OS X 10.8 through
10.11. It simultaneously exposes a wealth of useful information about the
operating system and hardware it’s running on through a informational device and
sysctl interface.

It exposes two devices:

	/dev/pmem # Physical memory read access (can be built with write support).

	/dev/pmem_info # Informational dump.

Quick Example

> sudo kextload MacPmem.kext
> sudo cat /dev/pmem_info

Outputs:
%YAML 1.2

meta:
pmem_api_version: 2
cr3: 5773611222
dtb_off: 5773611008
phys_mem_size: 17179869184
pci_config_space_base: 3758096384
mmap_poffset: 353394688
mmap_desc_version: 1
mmap_size: 11856
mmap_desc_size: 48
kaslr_slide: 304087040
kernel_poffset: 305135616
kernel_version: "Darwin Kernel Version 14.4.0: Thu May 28 11:35:04 PDT 2015; root:xnu-2782.30.5~1/RELEASE_X86_64"
version_poffset: 313959808

> sudo xxd -s 313959808 /dev/pmem | head

Outputs:
12b6a580:4461 7277 696e 204b 6572 6e65 6c20 5665 Darwin Kernel Ve
12b6a590:7273 696f 6e20 3134 2e34 2e30 3a20 5468 rsion 14.4.0: Th
12b6a5a0:7520 4d61 7920 3238 2031 313a 3335 3a30 u May 28 11:35:0
12b6a5b0:3420 5044 5420 3230 3135 3b20 726f 6f74 4 PDT 2015; root
12b6a5c0:3a78 6e75 2d32 3738 322e 3330 2e35 7e31 :xnu-2782.30.5~1
12b6a5d0:2f52 454c 4541 5345 5f58 3836 5f36 3400 /RELEASE_X86_64.
12b6a5e0:0e00 0000 0400 0000 0000 0000 8000 0000
12b6a5f0:0000 0000 3000 726f 6f74 0031 342e 342e 0.root.14.4.
12b6a600:3000 4461 7277 696e 0000 0000 0000 0000 0.Darwin........
12b6a610:0000 0000 0100 0000 0200 0000 0300 0000

> sudo rekall -f /dev/pmem # Analyze the running memory of my own system.

SYSCTL controls

Logging level

Enable debug logging.
> sudo sysctl -w kern.pmem_logging=4

Set to warn-level logging (default).
> sudo sysctl -w kern.pmem_logging=2

Read/write safety

By default, IO operations to /dev/pmem will silently fail (return zeros) for any
reads or writes to parts of memory marked as inaccessible by the EFI. The EFI
creates a physical memory map early in the boot process for the bootloader and
the kernel to interpret. This map demarks regions that are physically damaged,
backed by a PCI device (as opposed to RAM) or otherwise deserving special
consideration.

Disable read/write safety.
> sudo sysctl -w kern.pmem_allow_unsafe_operations=1

Re-enable read/write safety.
> sudo sysctl -w kern.pmem_allow_unsafe_operations=0

Pmem Memory acquisition Suite

Version 2.0rc1
Copyright 2015 Google Inc. All rights reserved.

Author: Michael Cohen scudette@google.com

The Pmem physical memory acquisition tools are advanced memory acquisition
tools. The acquisition tool is build around the standard AFF4 imager and
provides all of its standard functionality. However, additionally, the pmem tool
is also able to acquire physical memory on all platforms, as well as the page
file.

How to use the pmem acquisition tool.

By default the pmem acquisition tool will write an AFF4 volume. AFF4 volumes can
contain multiple streams of data, each identified by a unique name. Pmem will
add a physical memory stream to the volume, as well as the pagefile if
requested, and other important system files which may be required during
analysis.

Currently the AFF4 library supports three types of compression:

	“snappy” compression is based on Google’s snappy compressor. The compression
ratio is somewhat less than zlib provides, but acquisition speed is very
high. For some indicative numbers, On my system snappy compressed images are
acquired at around 300-350mb/s (of raw data). A 16Gb memory image is written
in approximately 50 seconds and the resulting image is around 6.7Gb.

	“zlib” compression is the default compression used by AFF4. On my system zlib
compressed images are acquired at approximately 90MiB/s. The same 16Gb image
is aquired in 2:55 (175 sec) and the resulting image is around 5.0Gb.

	“none” compression is uncompressed data. An AFF4 image is still written but no
compression is applied. It is typically slightly slower than snappy due to the
higher IO demands.

For memory images we recommend the “snappy” compression as the best tradeoff
between speed of acquisition (to minimize smear) and final image size.

To acquire memory to a new AFF4 volume:

pmem_imager -o /tmp/myimage.aff4 -c snappy -t

The -o option specifies the output volume to write. The -c option specifies the
compression algorithm and the -t option specifies to truncate the output
file.

Adding logical files to the AFF4 volume.

By default AFF4 imagers do not truncate the output volume in order to allow
additional streams to be added to a volume at a later time. Thus if you find
that you want to add another logical file acquisition to the image after
acquiring the image, you can simply do so without deleting the existing memory
image. e.g. to acquire all the files in the /boot/ directory:

pmem_imager -i /boot/* -o /tmp/myimage.aff4

Note that pmem will not re-acquire memory if there is already a physical memory
stream in the volume unless provided with the -m option.

Inspecting the contents of an AFF4 volume.

To inspect the content of an AFF4 volume, you can simply use the -V flag:

./pmem_imager -V /tmp/test.zip
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix aff4: <http://aff4.org/Schema#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<aff4://eaab0ac2-fc70-4060-9af8-c122e8aca072/boot/System.map-3.13.0-44-generic>
 aff4:chunk_size 32768 ;
 aff4:chunks_per_segment 1024 ;
 aff4:compression <https://github.com/google/snappy> ;
 aff4:size 3388834 ;
 aff4:stored <aff4://eaab0ac2-fc70-4060-9af8-c122e8aca072> ;
 a aff4:image .

<aff4://eaab0ac2-fc70-4060-9af8-c122e8aca072/proc/kcore>
 aff4:category <http://aff4.org/Schema#memory/physical> ;
 aff4:stored <aff4://eaab0ac2-fc70-4060-9af8-c122e8aca072> ;
 a aff4:map .

<aff4://eaab0ac2-fc70-4060-9af8-c122e8aca072/proc/kcore/data>
 aff4:chunk_size 32768 ;
 aff4:chunks_per_segment 1024 ;
 aff4:compression <https://github.com/google/snappy> ;
 aff4:size 17071980544 ;
 aff4:stored <aff4://eaab0ac2-fc70-4060-9af8-c122e8aca072> ;
 a aff4:image .

You can see one stream for each object stored in the volume. The physical memory
segment is denoted by the stream with the category of memory/physical. Since
physical memory is sparse, the physical memory stream is usually an aff4:map
(which can be sparse). The actual data is stored in the aff4:image which has a
name ending with /data.

Extracting a stream from a volume.

While it is possible to just use the AFF4 volume normally in Rekall, it is also
possible to extract any stream directly:

pmem_imager -e boot/vmlinuz-3.13.0-44-generic -o /tmp/vmlinuz-3.13.0-44-generic /tmp/myimage.aff4

Creating a TAP server.

This is directory structure on theserver:

	Create a new user - rekalltest with home directory: /home/rekalltest/

	Within this directory:

	git clone -depth 1 https://github.com/google/rekall.git

	git clone -depth 1 https://github.com/scudette/rekall-test.git

	Create a new virtualenv environment for running tests:

	virtualenv /home/rekalltest/Test

	Serve the rekall-test directory via apache:
	Edit /etc/apache2/sites-available/000-default.conf

<Directory /home/rekalltest/rekall-test/>
 Options Indexes FollowSymLinks
 AllowOverride None
 Require all granted
</Directory>

<VirtualHost *:80>
 ServerAdmin webmaster@localhost
 DocumentRoot /home/rekalltest/rekall-test/
 ServerName tap.rekall-forensic.com

 ErrorLog ${APACHE_LOG_DIR}/error.log
 CustomLog ${APACHE_LOG_DIR}/access.log combined
 Include conf-available/serve-cgi-bin.conf
</VirtualHost>

Now copy submit.py to /usr/lib/cgi-bin/ make it executable and edit the file to
set the password and control file location. The control file is written by the
cgi script and this kicks off the entire process so we need to ensure this is
somewhere the apache user can write to.

Finally start the runner.sh. This program just checks for the control file
every few seconds and if it is found, it launches the main script run_test.sh
and then removes the control file.

Rekall Layout Expert

Live Memory analysis on the Linux platform has traditionally been difficult to
perform. Memory analysis requires precise knowledge of struct layout information
in memory, usually obtained through debugging symbols generated at compile
time. The Linux kernel is however, highly configurable, implying that debugging
information is rarely applicable to systems other than the ones that generated
it. For incident response applications, obtaining the relevant debugging
information is currently a slow and manual process, limiting its usefulness in
rapid triaging.

How do we analyze Linux systems right now?

The current process for generating a Rekall profile for a Linux system is
tedious:

	You must find and install the kernel headers package for the same kernel as
the running kernel (for example apt-get install linux-headers-3.16.0-39-generic).

	Then you need to build a kernel module (rekall/tools/linux/module.c) on
that system to generate the debug kernel module module_dwarf.ko.

	Finally on a system with Rekall installed, one needs to convert this to a
Rekall profile (using rekall convert_profile 4.2.0-generic.zip 4.2.0-generic.json for example).

This is hard to do in an incident response situation. Sometimes servers do not
have the required compilers, kernel headers etc. This is especially hard if the
kernel was cusom made. In that case it may be difficult to even find the
required kernel headers package (it may not have even been built with the custom
kernel). In all likelyhood you may need to copy the kernel config and System.map
off the system you want to analyze to another system (with compiler tool chains
and kernel headers installed) so you can build the profile.

This logistical issue make it difficult to do Linux live memory analysis in
practice - so you end up taking a memory image of the system for later analysis
(Then you have to deal with transferring huge images around, smear and lot of
other fun problems :-).

If you really want to be prepared, you must build a huge library of kernel
profiles in advance. For each released kernel version, you need to have every
variation released by every distribution. For example in Ubuntu, there are
generic and low latency variation (e.g. linux-headers-3.16.0-39-generic,
linux-headers-3.16.0-39-lowlatency) for each minor version). You can just
forget about having custom kernels in your library because you can not predict
in advance what config parameters someone will change!

Is there a better way?

Have you ever found yourself uttering: “I will pay someone $1000 to find a way
to do Linux Memory forensics without building a *$@#!% profile for every #@$#%@#
kernel?” - I know I have!

In a perferct world, we would just run Rekall on any Linux system, point it at
/proc/kcore or /dev/pmem and just go without worrying about building
profiles! That would be nice.

We are not quite there, but almost :-). The Layout Expert is the small step
forward. The process using the Layout Expect is much simpler:

	On the system you want to analyze, run the Layout Expert which will download
a single Pre-AST file for every kernel version (regardless of kernel
configuration, distribution flavour etc.).

	Then launch the layout expert, providing it the local system’s config file and
System.map:

$ layout_tool make_profile --config_file_path boot/config-4.2.02.0.smp \
 --system boot/System.map-4.2.02.0.smp pre_ast_4.2.0-22.json profile.json

2016-01-23 09:44:29,416 INFO LOADING PREPROCESSOR AST FROM: pre_ast_4.2.0-22.json
2016-01-23 09:44:34,494 INFO DONE
2016-01-23 09:44:34,495 INFO LINKING INCLUDES
2016-01-23 09:44:34,937 INFO LINKED
2016-01-23 09:44:34,937 INFO EXTRACTING CONFIG FLAGS
2016-01-23 09:44:34,994 INFO EXTRACTED
2016-01-23 09:44:35,108 INFO PREPROCESSING
2016-01-23 09:44:50,856 INFO PREPROCESSED
2016-01-23 09:44:50,856 INFO Completed preprocessing pre-ast in 16 Seconds
2016-01-23 09:44:50,856 INFO GENERATING PURE C FILE
2016-01-23 09:44:53,047 INFO GENERATED
2016-01-23 09:44:53,048 INFO Completed generating pure C file in 2 Seconds
2016-01-23 09:44:53,048 INFO TRIMMING C FILE
2016-01-23 09:45:14,340 INFO Completed trimming C file in 21 Seconds
2016-01-23 09:45:14,341 INFO TRIMMED C FILE
2016-01-23 09:45:14,354 INFO PARSING STRUCTS
2016-01-23 09:45:37,853 INFO Completed parsing struct layouts in 23 Seconds
2016-01-23 09:45:37,853 INFO PARSED
2016-01-23 09:45:37,853 INFO GENERATING PROFILE
2016-01-23 09:45:37,949 INFO Exporting 627 structs
2016-01-23 09:45:38,763 INFO GENERATED

The Layout Expert is able to calculate the memory layout of critical kernel
structures at runtime on the target system without requiring extra tools, such
as the compiler tool-chain to be pre-installed.

How does it work?

The main problem with memory analysis on Linux is that the Linux kernel is so
configurable and customizable. For example, in order to properly parse the
memory layout of struct task_struct, we can see the source:

struct task_struct {
 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
 void *stack;
 atomic_t usage;
 unsigned int flags; /* per process flags, defined below */
 unsigned int ptrace;

#ifdef CONFIG_SMP
 struct llist_node wake_entry;
 int on_cpu;
 struct task_struct *last_wakee;
 unsigned long wakee_flips;
 unsigned long wakee_flip_decay_ts;

 int wake_cpu;
#endif
 int on_rq;

 int prio, static_prio, normal_prio;
 unsigned int rt_priority;
 const struct sched_class *sched_class;
 struct sched_entity se;
 struct sched_rt_entity rt;
#ifdef CONFIG_CGROUP_SCHED
 struct task_group *sched_task_group;
#endif

#ifdef CONFIG_PREEMPT_NOTIFIERS
 /* list of struct preempt_notifier: */
 struct hlist_head preempt_notifiers;
#endif

....

Depending on kernel configuration options there will be different members
inserted in the middle of the struct - even for the same kernel version. This is
primarily why you need to compile a debug kernel module for every single kernel
configuration - even of the same version. Depending on various kernel config
options the layouts can change dramatically (sometimes if the profiles are very
close some fields will be parsed correctly by Rekall but others wont - the
familiar missing data in plugin outputs).

The Layout Expert attempts to emulate the GCC compiler chains to the extent of
being able to predict the struct layout that the compiler might decide
on. Essentially we simulate the compilation of the kernel debug module.

The GCC compiler, reads the kernel config file and then preprocesses the kernel
headers to add or remove code depending on these configuration options. In the
Layout Expert we wish to have a data structure that can be re-used for different
configurations without needing the kernel config.

Therefore, the Layout Expert first parses all the kernel headers into a
Preprocessor Abstract Syntax Tree (Pre-AST for short). The Pre-AST includes all
the possibilities of each #ifdef branch. This is the file which the Layout
Expert operates on.

At runtime (i.e. during system analysis), the Layout Expert combines the system
configuration with the Pre-AST to produced the Preprocessed C code. In essence,
the headers #ifdef directives are removed, and the different options are
combined to produce a final C file, free from preprocessing macros. In this
phase, the Layout Expert acts as a C pre-processor. The result is a huge C file
with all the code in all the headers stuck together.

Next, the Layout Expert applies trimming to this file. This is essentially a
quick once over pass to identify only structs, unions, enums and typedef
instructions. This optimization step means that we have much less code to parse
in the next step and that the code that we do need to parse is more consistent
and so easier to parse.

Finally the Layout Expert parses the structs that Rekall is actually interested
in (i.e. those structs with plugins that look at them). This parsing phase
emulates a C compiler. We then apply the GCC struct layout model to the parsed
structs in order to predict the precise memory layout of all fields in the
structs (considering attributes, e.g. ``attribute((packed)),attribute((aligned(8))`).

The last step is to generate a Rekall profile ready for use.

Preparation.

Before the profile generation can occur in the field, we need to build the
Pre-AST file for the specific kernel version. This is easy since it does not
require any specific configuration file or special tools (Remember that the
Pre-AST includes all branches of any #ifdef directives so we do not need to
evaluate any macros at this stage.).

You can use the kernel headers package for the specific kernel, or the full
kernel source. There is no need to actually compile the source (i.e. make depmod etc). Note that the kernel header package does not include “private” or
non exported structs, so these will be missing from the profile, but current
Rekall does not need those.

$ layout_tool build_pre_ast --source_file_path ~/rekall/tools/linux/module.c \
 --linux_repository_path /usr/src/linux-headers-4.2.0-22-generic/ pre_ast_4.2.0-22.json

2016-01-23 10:38:00,493 INFO LOADING AND PARSING HEADERS
2016-01-23 10:38:58,912 INFO Completed built pre-ast forest in 58 Seconds
2016-01-23 10:38:58,913 INFO LOADED AND PARSED

Bugs and support

The Layout Expert is brought to you by the same people who develop Rekall, but
it is considered a separate project. It is available under an Apache license
(Check the LICENSE file). However, there is no official support or warranty; not
even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

If you think you’ve found a bug, please report it at:

https://github.com/google/rekall/issues

You can also mail to the list rekall-discuss@googlegroups.com

Rekall Memory Forensic Framework

The Rekall Framework is a completely open collection of tools, implemented in
Python under the GNU General Public License, for the extraction of digital
artifacts from volatile memory (RAM) samples. The extraction techniques are
performed completely independent of the system being investigated but offer
visibilty into the runtime state of the system. The framework is intended to
introduce people to the techniques and complexities associated with extracting
digital artifacts from volatile memory samples and provide a platform for
further work into this exciting area of research.

The Rekall distribution, as well as further information is available
from: http://www.rekall-forensic.com/

Quick start

Rekall is available as a python package installable via the pip package
manager. Simply type (for example on Linux):

	sudo pip install rekall

To have all the dependencies installed. You still need to have python and pip
installed first.

To be able to run the ipython notebook, the following are also required:

	pip install Jinja2 MarkupSafe Pygments astroid pyzmq tornado wsgiref

If you want to use the yarascan plugin, install [yara and yara-python](http://plusvic.github.io/yara/).

For windows, Rekall is also available as a self contained installer
package. Please check the download page for the most appropriate installer to
use [Rekall-Forensic.com](http://www.rekall-forensic.com/)

Mailing Lists

Mailing lists to support the users and developers of Rekall
can be found at the following address:

rekall-discuss@googlegroups.com

Licensing and Copyright

Copyright (C) 2007-2011 Volatile Systems
Copyright 2012-2014 Google Inc. All Rights Reserved.

All Rights Reserved

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

Bugs and Support

There is no support provided with Rekall. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE.

If you think you’ve found a bug, please report it at:

https://github.com/google/rekall/issues

In order to help us solve your issues as quickly as possible,
please include the following information when filing a bug:

	The version of rekall you’re using

	The operating system used to run rekall

	The version of python used to run rekall

	The suspected operating system of the memory image

	The complete command line you used to run rekall

Further documentation is available at
http://www.rekall-forensic.com/

 _static/file.png

_static/down-pressed.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up.png

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		Welcome to Read the Docs

_static/minus.png

_static/comment-close.png

_static/comment-bright.png

_static/comment.png

